

BENCHMARK DEPOSITORY OF 2NDLIFE PRONE LIB & ACCEPTANCE CRITERIA AND GUIDELINES

Watt4Ever SRL DevEngineer Edvarts Emersons

Watt4Ever SRL

- Management of end-oflife EV batteries
- Building of new battery stationary systems

Founded in 2020 #Team: 10 Based in: Belgium Offices: Beringen and Brussels

Team

Aimilios Orfanos, co-CEO

Mechanical Engineer, 10-y experience in energy services and electricity networks

Niels Vandeput, COO Mechanical Engineer, 8-y experience in automotive technology

Customers/Partners

Dismantling Challenges


4-3. Remove Module (2)

D2. 1 – BENCHMARK DEPOSITORY OF 2NDLIFE PRONE LIB & ACCEPTANCE CRITERIA AND GUIDELINES

PARAMETER IDENTIFICATION

Table 1. 1st life identification section

Туре	Make	Model	Model Year
PHEV	FORD	KUGA	2019
BEV	PORSCHE	TAYCAN	2020

Table 2. Pack Level section

Physical properties				Nameplate specifications					
Weight	Length	Width	Height	Nominal voltage	Nominal energy content	Nominal capacity	Cooling Type	# <u>modules</u>	Module configuration
530	2830	1772	127	375	80	15	Liquid	30	15s2p
213	1200	1723	143	350	14	3	Forced Air	7	7s1p

Table 3. Module level section

Physical properties								<u>tro mechanical</u> prop	tro mechanical properties		
Weight	Length	Width	Height	# cells	Cell config.	Casing	CMU	Communication protocol	Busbar connector		
12	35	15	11	12	12s1p	Open top	External multi module	CAN	M6		
13	39	15	11	444	6s2p	Alu jacket	Internal	CAN	M6		

*** * * **

Table 4. Module level section

Nameplate specifications							
Nominal voltage	Nominal energy	Nominal capacity	Cooling type				
44	2.05	108	Heatsink				
22	2.86	240	Heatsink				

Table 5. Cell level section

Physical properties						Chemical p	properties	
Weight	Length	Width	Height	Cell shape	Diameter	Cathode	Anode	Ratio
914	30	80	123	Prismatic	-	External multi module	CAN	-

Table 6. Cell level section

Nameplate specifications						
Nominal voltage Nominal capacity						
3.75	21					

D2. 1 – BENCHMARK DEPOSITORY OF 2NDLIFE PRONE LIB & ACCEPTANCE CRITERIA AND GUIDELINES

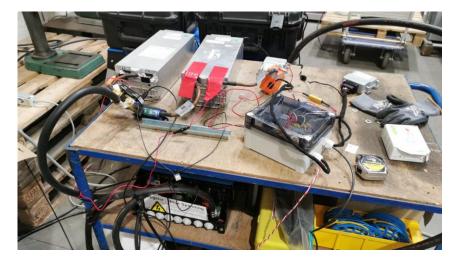
CRITERIA SELECTION

Criteria for LV 48V system

- Casing- Open top or Alu Jacket
- **Size**: 350*150*120 mm ± 100 mm on all axis
- CMU: External multimodule, external single module or internal and all can be reused if OEM CMU unit communications gateway is possible.
- Cell amount: 3s-12s
- Voltage: 10V-30V
- Chemistry: NMC or LFP.

Criteria for HV system

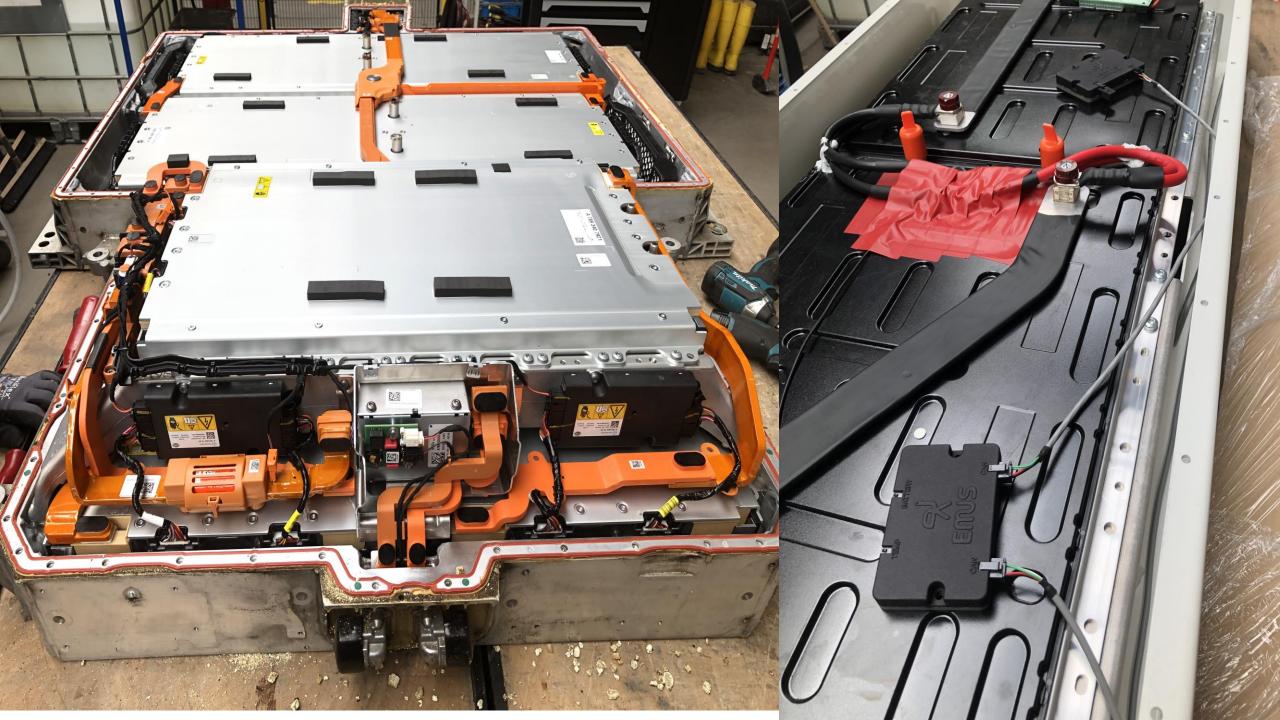
- **Size**: >350*150*120 mm ± 100 mm on all axis
- Cell amount: 12s-30s
- Voltage: 40V-100V



Testing and Evaluation Challenges

LG CHEM 12kWh/36S/150V 70KG . How to test it? Voltage check, resistance check? Custom CMU needed, OEM CMU is locked Then HV Cycler needed to cycle.

Reuse-HV or LV systems if manual reconfiguration can be done...


LG CHEM 2.86 kWh/6S/24V 12KG . Voltage check, resistance check?

Internal CMU, OEM BMS is locked 3rd part BMS needed, build a system around it and cycle with LV inverter

Reuse- HV or LV systems

Watt4Ever Systems

Battery modules coming from reused EV batteries + Battery Energy Storage Solutions for businesses (BESS)

- EV battery modules → stationary, e-mobility
- Plug & play stationary BESS's → balance the
 electricity system, store (cheap) energy to consume
 when prices are higher, avoid consumption peaks,
 or provide backup energy in case of blackout.

D2. 1 – BENCHMARK DEPOSITORY OF 2NDLIFE PRONE LIB & ACCEPTANCE CRITERIA AND GUIDELINES

CONTINUITY OF WORK

Partners have used different data sources to put in necessary makes, models and parameters on different level, thus, there is a lack of data consistency as some of the parameters are left blank, project partners agree to do their best to acquire information to fill the missing information. Database is kept updated till 2025.

CONCLUSIONS

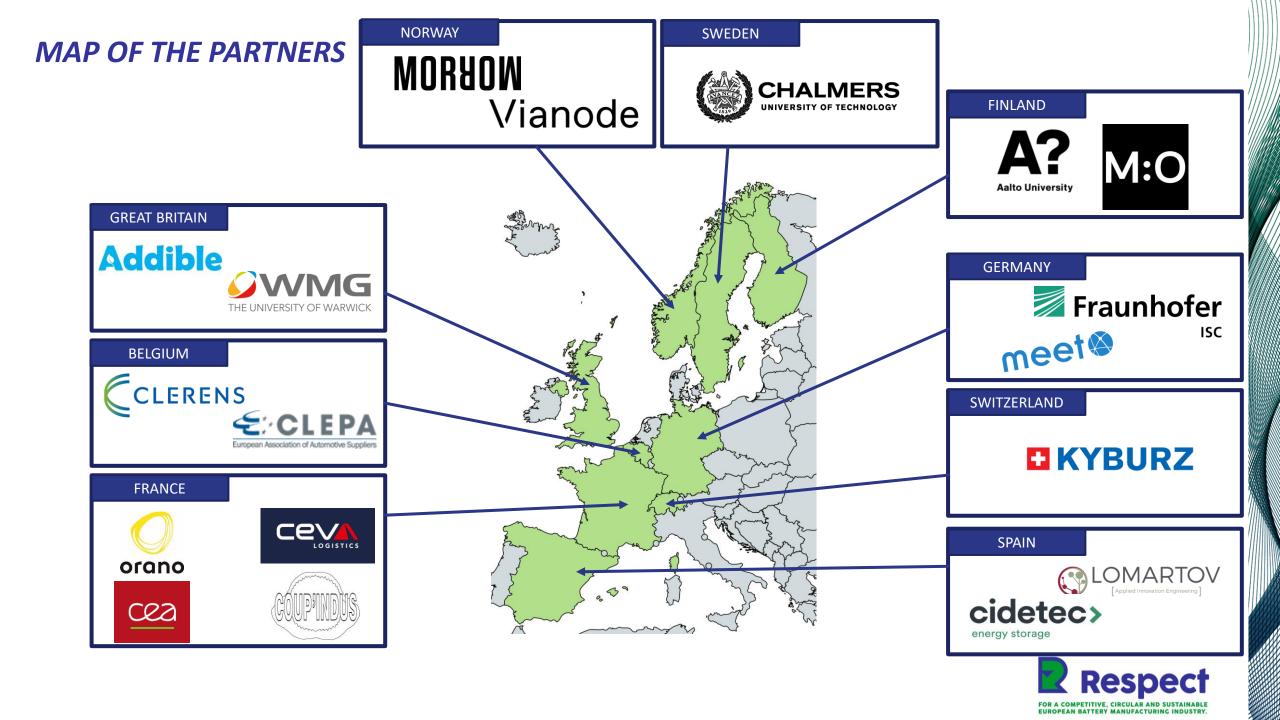
Based on the DB, a Benchmark depository was obtained, giving an overview of the most relevant parameters for 2nd Life. The most important parameters as module size, capacity, cell amount, CMU and power terminals were selected. Researched have tried to gather as much data as possible, but for some entries in the Module and Cell parameter level no publicly available information was found to fill. Yet database provides insights on Pack – Module - Cell level sizing, capacities and chemistries for dismantling optimization, while also providing necessary information for second life integration.

Materials for Batteries Cluster Hub Annual Meeting 2023

16th November 2023

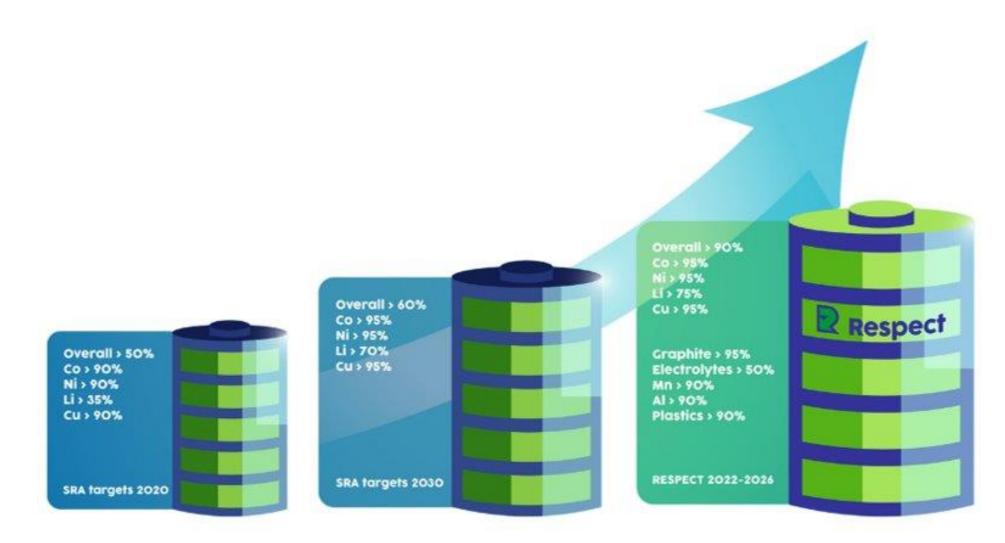
Benjamin P. Wilson

Aalto University, Finland



RESPECT NUMBERS AND FIGURES

European Climate, Infrastructure and Environment Executive Agency Project number: 101069865


RESPECT OVERVIEW

RESPECT's aim is to achieve efficient, sustainable, innovative and safe battery recycling processes in the EU encompassing new processes capable of achieving > 90% wt recovery rate/efficiency and supporting Li-ion battery manufacturing in Europe.

RESPECT OVERVIEW

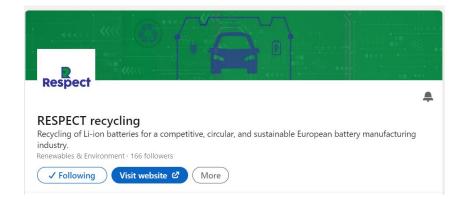
KPI Recycling efficiency Li-ion batteries

Some Innovative points of the RESPECT project

	Work package		Main innovative points				
1	Battery supply and deactivation	Treatment of modules with variable charge	Treatment of damaged modules	No thermal treatement or inert gas	Reusable reagents for discharge		
2	Pre treatment for material concentration	Battery cutting and electrodes air ejection	Extraction of casing without mixing	Concentrated active mass purified from graphite	All materials are recoverable		
4-	Direct recycling and active material synthesis	Cathode recovery without destruction	Less reagents needs	Less effluents quantity	Less steps to obtain CAM		
					R espect		

FOR A COMPETITIVE, CIRCULAR AND SUSTAINABLE EUROPEAN BATTERY MANUFACTURING INDUSTRY. The RESPECT consortium partners appreciate the collaboration with the EU-funded projects under the Cluster Hub!

Potential Topics for Collaboration:


- Battery Passport
- Logistic aspects and transportation
- A Separation and treatment for graphite and other battery materials
- C Life cycle sustainability assessment of End of Life (EoL)
- batteries

Social Media of the RESPECT project

Follow us on Social Media!

RESPECT Recycling @RespectRecycle

RESPECT is an #HorizonEurope project contributing to the European #battery ecosystem and to the development of the battery supply chain.

@ respect-recycling.eu 🖾 Joined December 2022

LinkedIn RESPECT recycling

Twitter @RespectRecycle

<u>Website: Home | Respect</u> <u>Recycling (respect-recycling.eu)</u>

Subscribe to our Newsletter!

THANK YOU!

Email: ben.wilson@aalto.fi

